
By

Dr M. Senthilkumar

Assistant Professor

Department of Computer Science

Government Arts and Science College, Avinashi - 641654

Threads

2

Threads

class ABC

{

public static void main(String args[])

{

Statement – 1;

Statement – 2;

Statement – 3;

Statement – 4;

Statement – n;

}

}

Execution Starts

Continuing Flow of

Execution

Execution Ends

Single Thread

3

Threads

 A Java program is executed in a particular sequence.

The program begins, runs through a sequence of

executions, and finally ends.

 At a given point of time, only one statement is under

execution

 So, a Single flow of control is required to execute a

Java program

 Thread refers to a flow of control for a Program

4

Threads

class ABC

{

public static void main(String args[])

{

}

}

class A

{

}

class B

{

}

class C

{

}

Thread A Starts StartsThread B Thread C Starts

Main Thread Starts

CPU

Switching

CPU

Switching

Multi-Threaded

5

Threads

 A Java program can be divided into sub-programs.

 Each sub program must have a separate sequence

of execution i.e., a Separate flow control is required

 Each sub-program must be independently executed

 All sub-programs can be parallely executed

 So Multiple flow of controls are found i.e., Multiple

threads are required

6

Threads

 Java program contains either a single flow of control

or multiple flow of control for execution

 If a Java program contains single flow of control,

then it is known as Single Threaded Program

 If a Java program contains multiple flows of control

then it is known as Multithreaded Program

7

Creating Threads – run() method

 Threads are created in the form of Objects

 Thread contains a method called run()

public void run()

{

Statements for implementing Thread

}

8

Creating Threads - run() method

 The run() method is the heart and soul of any thread

 The run() method makes the entire body of Thread

 The run() method is the only method that implements

Thread’s behavior

 The run() method is invoked by an Object of Thread

9

Creating Threads - start() method

 Thread is created. It is initiated using start() method

 The start() is also a method of Thread

 Thread can be created using Two methods

 Extending Thread Class and overriding the run()

 Implementing Runnable Interface which has run()

10

Extending Thread Class - overriding the run()

class Mythread extends Thread

{

}

public void run ()

{

}

Mythread aThread = new MyThread();

aThread.start();

Newborn state

Runnable stateRunning state

JRE

Thread Object

11

Extending Thread Class - overriding the run()

 Declare a Class which extends java.lang.Thread class

 Implement the run()

 Create Thread object and call start() to initiate Thread

12

Extending Thread Class – Example 1

class A extends Thread

{

public void run ()

{

for (int i = 1; i <= 5; i++)

{

System.out.println("From Thread A : i = " + i);

}

System.out.println("Exit From Thread A");

}

}

class B extends Thread

{

public void run ()

{

for (int j = 1; j <= 5; j++)

{

System.out.println("From Thread B : j = " + j);

}

System.out.println("Exit From Thread B");

}

}

13

Extending Thread Class – Example 1

class C extends Thread

{

public void run ()

{

for (int k = 1; k <= 5; k++)

{

System.out.println("From Thread C : k = " + k);

}

System.out.println("Exit From Thread C");

}

}

class ThreadTest

{

public static void main(String args[])

{

new A().start();

new B().start();

new C().start();

}

}

D:\jdk1.8.0_111\jdk1.8.0_111\bin>javac ThreadTest.java

14

Extending Thread Class – Example 1
D:\jdk1.8.0_111\jdk1.8.0_111\bin>java ThreadTest

From Thread A : i = 1

From Thread A : i = 2

From Thread A : i = 3

From Thread A : i = 4

From Thread A : i = 5

Exit From Thread A

From Thread B : j = 1

From Thread B : j = 2

From Thread B : j = 3

From Thread B : j = 4

From Thread B : j = 5

Exit From Thread B

From Thread B : k = 1

From Thread B : k = 2

From Thread B : k = 3

From Thread B : k = 4

From Thread B : k = 5

Exit From Thread C

D:\jdk1.8.0_111\jdk1.8.0_111\bin>java ThreadTest

From Thread A : i = 1

From Thread A : i = 2

From Thread A : i = 3

From Thread A : i = 4

From Thread A : i = 5

Exit From Thread A

From Thread B : j = 1

From Thread B : j = 2

From Thread B : j = 3

From Thread B : j = 4

From Thread B : j = 5

Exit From Thread B

From Thread B : k = 1

From Thread B : k = 2

From Thread B : k = 3

From Thread B : k = 4

From Thread B : k = 5

Exit From Thread C

Run 1 Run 2

15

Extending Thread Class – Example 1
D:\jdk1.8.0_111\jdk1.8.0_111\bin>java ThreadTest

From Thread A : i = 1

From Thread A : i = 2

From Thread A : i = 3

From Thread A : i = 4

From Thread A : i = 5

Exit From Thread A

From Thread B : j = 1

From Thread B : j = 2

From Thread B : j = 3

From Thread B : j = 4

From Thread B : j = 5

Exit From Thread B

From Thread B : k = 1

From Thread B : k = 2

From Thread B : k = 3

From Thread B : k = 4

From Thread B : k = 5

Exit From Thread C

D:\jdk1.8.0_111\jdk1.8.0_111\bin>java ThreadTest

From Thread A : i = 1

From Thread A : i = 2

From Thread A : i = 3

From Thread B : j = 1

From Thread B : j = 2

From Thread B : j = 3

From Thread B : j = 4

From Thread B : j = 5

Exit From Thread B

From Thread A : i = 4

From Thread A : i = 5

Exit From Thread A

From Thread B : k = 1

From Thread B : k = 2

From Thread B : k = 3

From Thread B : k = 4

From Thread B : k = 5

Exit From Thread C

Run 3
Run 4

16

Threads – stop(), sleep(), suspend(), wait()

aThread.stop(); Moving a Thread to Dead state

aThread.sleep(); Block a Thread to Specified Time

aThread.suspend(); Block a Thread until further Orders

aThread.wait(); Block a Thread until a Condition occurs

17

Life Cycle of a Thread

New Born

Running Runnable

yield

New Thread

Active Thread

start

Dead

Blocked

stop

stop

stop
resume

notify

suspend

sleep

wait

Killed Thread

Idle Thread

18

Life Cycle of a Thread – New Born State

 New Born State: Thread is created

 Thread is invoked using

 Thread.start();

 Moving a Thread to Runnable state

 Thread Object is killed using

 Thread.stop();

 Moving a Thread to Dead state

19

Life Cycle of a Thread – Runnable State

 Runnable State:

 Thread is ready for execution

 Thread is waiting in Queue to get CPU

20

Life Cycle of a Thread – Runnable State

 Runnable State:

 Round Robin: Equal Time Slots for Threads with

same Priorities

 Thread.yield(): Relinquish Control from Running

Thread and move it to Runnable State

 Threads may be assigned Priorities

 Threads are arranged based on Priorities

21

Life Cycle of a Thread – Running State

 Running State: Thread is executed in CPU

22

Life Cycle of a Thread – Running State

Thread.stop(); Moving a Thread to Dead state

Thread.suspend(); Block a Thread until further Orders

Resumed

Thread.sleep(); Block a Thread to Specified Time (ms)

Thread.wait(); Block a Thread until a Condition occurs

Notified

23

Life Cycle of a Thread – Blocked State

 Blocked State: To satisfy the requirements

 Thread is suspended

 Thread is sleeping

 Thread is waiting

24

Life Cycle of a Thread – Dead State

 Dead State:

 Life of the Thread Ends

 Thread Completes its execution

 Thread is killed after

 New born

 Running/ Runnable

 Blocked

25

Thread Methods – Example 2

class A extends Thread

{

public void run ()

{

for (int i = 1; i <= 5; i++)

{

if (i == 1) yield();

System.out.println("From Thread A : i = " + i);

}

System.out.println("Exit From Thread A");

}

}

class B extends Thread

{

public void run ()

{

for (int j = 1; j <= 5; j++)

{

System.out.println("From Thread B : j = " + j);

if (j == 3) stop();

}

System.out.println("Exit From Thread B");

}

}

26

Thread Methods – Example 2

class C extends Thread

{

public void run ()

{

for (int k = 1; k <= 5; k++)

{

System.out.println("From Thread C : k = " + k);

if (k == 1)

try

{

sleep(1000);

}

catch(Exception e) { }

}

System.out.println("Exit From Thread C");

}

}

class ThreadTest2

{

public static void main(String args[])

{

A threadA = new A();

B threadB = new B();

C threadC = new C();

System.out.println(" Start Thread A ");

threadA.start();

System.out.println(" Start Thread B ");

threadB.start();

System.out.println(" Start Thread C ");

threadC.start();

System.out.println(" End of Main Thread ");

}

}

27

Thread Methods – Example 2

28

Thread Priorities

 setPriority(intNumber) – Sets priority for a Thread

 intNumber may take values from 1 to 10

 Thread class contains several priority constants

MIN_PRIORITY = 1

NORM_PRIORITY = 5

MAX_PRIORITY = 10

 NORM_PRIORITY is default – Many user level processes uses it with +/- 1)

29

Thread Priorities – Example 3

import java.io.*;

class A extends Thread

{

public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println(i + "*" +3+ "=" +(i*3));

}

System.out.println("End of the 1st Thread");

}

}

class B extends Thread

{

public void run()

{

for(int j=1;j<=5;j++)

{

System.out.println(j + "*" +5+ "=" +(j*5));

}

System.out.println("End of the 2nd Thread");

}

}

30

Thread Priorities – Example 3

class C extends Thread

{

public void run()

{

for(int k=1;k<=5;k++)

{

System.out.println(k + "*" +7+ "=" +(k*7));

}

System.out.println("End of the 3rd Thread");

}

}

31

Thread Priorities – Example 3

public class Multithread

{

public static void main(String args[])throws IOException

{

A ThreadA=new A();

B ThreadB=new B();

C ThreadC=new C();

ThreadA.setPriority(Thread.NORM_PRIORITY);

ThreadB.setPriority(Thread.MAX_PRIORITY);

ThreadC.setPriority(Thread.MIN_PRIORITY);

System.out.println("The priority of Thread A is "+ThreadA.getPriority());

System.out.println("The priority of Thread B is "+ThreadB.getPriority());

System.out.println("The priority of Thread C is "+ThreadC.getPriority());

ThreadA.start();

ThreadB.start();

ThreadC.start();

}

}

32

Thread Priorities – Example 3
D:\jdk1.8.0_111\jdk1.8.0_111\bin>java Multithread

The priority of Thread A is 5

The priority of Thread B is 10

The priority of Thread C is 1

1*5=5

2*5=10

3*5=15

4*5=20

5*5=25

End of the 2nd Thread

1*3=3

2*3=6

3*3=9

4*3=12

5*3=15

End of the 1st Thread

1*7=7

2*7=14

3*7=21

4*7=28

5*7=35

End of the 3rd Thread

33

Implementing Runnable Interface

 Runnable interface declares run() method

 Declare a class that implements Runnable interface

 Implement run()

 Create a Thread by defining an object that is instantiated

from this “runnable” class of as the target of the Thread

 Call the Thread’s start()

34

Implementing Runnable Interface – Example 4

class X implements Runnable

{

public void run()

{

for(int i = 1; i <= 10; i++)

{

System.out.println(“\t ThreadX : “ + i);

}

System.out.println(“End of ThreadX “);

}

}

35

Implementing Runnable Interface – Example 4

Class RunnableTest

{

public static void main(String args[])

{

X runnable = new X();

Thread threadX = new Thread(runnable);

threadX.start();

System.out.println(“End of main Thread“);

}

}

36

Implementing Runnable Interface – Example 4

37

References

 Programming with Java – A Primer - E. Balagurusamy, 3rd

Edition, TMH

38

Thank You

